55 research outputs found

    Electrical charging of ash in Icelandic volcanic plumes

    Full text link
    The existence of volcanic lightning and alteration of the atmospheric potential gradient in the vicinity of near-vent volcanic plumes provides strong evidence for the charging of volcanic ash. More subtle electrical effects are also visible in balloon soundings of distal volcanic plumes. Near the vent, some proposed charging mechanisms are fractoemission, triboelectrification, and the so-called "dirty thunderstorm" mechanism, which is where ash and convective clouds interact electrically to enhance charging. Distant from the vent, a self-charging mechanism, probably triboelectrification, has been suggested to explain the sustained low levels of charge observed on a distal plume. Recent research by Houghton et al. (2013) linked the self-charging of volcanic ash to the properties of the particle size distribution, observing that a highly polydisperse ash distribution would charge more effectively than a monodisperse one. Natural radioactivity in some volcanic ash could also contribute to self-charging of volcanic plumes. Here we present laboratory measurements of particle size distributions, triboelectrification and radioactivity in ash samples from the Gr\'{i}msv\"{o}tn and Eyjafjallaj\"{o}kull volcanic eruptions in 2011 and 2010 respectively, and discuss the implications of our findings.Comment: XV Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, US

    Lord Kelvin’s atmospheric electricity measurements

    Get PDF
    Lord Kelvin (William Thomson) made important contributions to the study of atmospheric elec- tricity during a brief but productive period from 1859–1861. By 1859 Kelvin had recognised the need for “incessant recording” of atmospheric electrical parameters, and responded by inventing both the water dropper equaliser for measuring the atmospheric potential gradient (PG), and photographic data logging. The water dropper equaliser was widely adopted internationally and is still in use today. Following theoretical consid- erations of electric field distortion by local topography, Kelvin developed a portable electrometer, using it to investigate the PG on the Scottish island of Arran. During these environmental measurements, Kelvin may have unwittingly detected atmospheric PG changes during solar activity in August / September 1859 associated with the “Carrington event”, which is interesting in the context of his later statements that solar magnetic influ- ence on the Earth was impossible. Kelvin’s atmospheric electricity work presents an early representative study in quantitative environmental physics, through the application of mathematical principles to an environmental problem, the design and construction of bespoke instrumentation for real world measurements and recognising the limitations of the original theoretical view revealed by experimental wor

    Recent advances in global electric circuit coupling between the space environment and the troposphere

    Get PDF
    The global atmospheric electric circuit is driven by thunderstorms and electrified rain/shower clouds and is also influenced by energetic charged particles from space. The global circuit maintains the ionosphere as an equipotential at∼+250 kV with respect to the good conducting Earth (both land and oceans). Its “load” is the fair weather atmosphere and semi-fair weather atmosphere at large distances from the disturbed weather “generator” regions. The main solar-terrestrial (or space weather) influence on the global circuit arises from spatially and temporally varying fluxes of galactic cosmic rays (GCRs) and energetic electrons precipitating from the magnetosphere. All components of the circuit exhibit much variability in both space and time. Global circuit variations between solar maximum and solar minimum are considered together with Forbush decrease and solar flare effects. The variability in ion concentration and vertical current flow are considered in terms of radiative effects in the troposphere, through infra-red absorption, and cloud effects, in particular possible cloud microphysical effects from charging at layer cloud edges. The paper identifies future research areas in relation to Task Group 4 of the Climate and Weather of the Sun-Earth System (CAWSES-II) programme

    A scientific career launched at the start of the space age: Michael Rycroft at 80

    Get PDF
    The scientific career of Michael Rycroft (born in 1938) spans the space age, during which significant changes have occurred in how scientists work, experiment, and interact. Here, as part of his 80th birthday celebrations, we review his career to date in terms of the social and structural changes in collaborative international science. His contributions to research, teaching, and management across solar–terrestrial and ionospheric physics as well as atmospheric and space science are also discussed

    Shear-induced electrical changes in the base of thin layer cloud

    Get PDF
    Charging of upper and lower horizontal boundaries of extensive layer clouds results from current flow in the global electric circuit. Layer-cloud charge accumulation has previously been considered a solely electrostatic phenomenon, but it does not occur in isolation from meteorological processes, which can transport charge. Thin layer clouds provide special circumstances for investigating this dynamical charge transport, as disruption at the cloud-top may reach the cloud base, observable from the surface. Here, a thin (~300 m) persistent layer-cloud with base at 300 m and strong wind shear at cloud-top was observed to generate strongly correlated fluctuations in cloud base height, optical thickness and surface electric Potential Gradient (PG) beneath. PG changes are identified to precede the cloud base fluctuations by 2 minutes, consistent with shear-induced cloud-top electrical changes followed by cloud base changes. These observations demonstrate, for the first time, dynamically driven modification of charge within a layer-cloud. Even in weakly charged layer-clouds, redistribution of charge will modify local electric fields within the cloud and the collisional behaviour of interacting charged cloud droplets. Local field intensification may also explain previously observed electrostatic discharges in warm clouds

    Precipitation modification by ionization

    Get PDF
    Rainfall is hypothesised to be influenced by droplet charge, which is related to the global circuit current flowing through clouds. This is tested through examining a major global circuit current increase following release of artificial radioactivity. Significant changes occurred in daily rainfall distribution in the Shetland Islands, away from pollution. Daily rainfall changed by 24%, and local cloud optically thickened, within the nuclear weapons test period. This supports expectations of electrically induced microphysical changes in liquid water clouds from additional ionisation

    Triboelectric charging of volcanic ash from the 2011 GrĂ­msvĂśtn eruption

    Get PDF
    The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office’s low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5 024004 (2010); H. Hatakeyama J. Meteorol. Soc. Jpn. 27 372 (1949)]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm -3 s -1, and growth rates between 2 and 37 nm h -1. The corresponding H2O concentrations were typically around 106 cm -3 or less. The experimentally-measured formation rates and htwosofour concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C

    Energetic particle influence on the Earth's atmosphere

    Get PDF
    This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
    • …
    corecore